Modified Vector Rotational CORDIC (MVR-CORDIC) Algorithm and Architecture
نویسندگان
چکیده
The CORDIC algorithm is a well-known iterative method for the computation of vector rotation. However, the major disadvantage is its relatively slow computational speed. For applications that require forward rotation (or vector rotation) only, we propose a new scheme, the modified vector rotational CORDIC (MVR-CORDIC) algorithm, to improve the speed performance of CORDIC algorithm. The basic idea of the proposed scheme is to reduce the iteration number directly while maintaining the SQNR performance. This can be achieved by modifying the basic microrotation procedure of CORDIC algorithm. Meanwhile, three searching algorithms are suggested to find the corresponding directional and rotational sequences so as to obtain the best SQNR performance. Three SQNR performance refinement schemes are also suggested in this paper. Namely, the selective prerotation scheme, selective scaling scheme, and iteration-tradeoff scheme. They can reduce and balance the quantization errors encountered in both microrotation and scaling phases so as to further improve the overall SQNR performance. Then, by combining these three refinement schemes, we provide a systematic design flow as well as the optimization procedure in the application of MVR-CORDIC algorithm. Finally, we present two VLSI architectures for the MVR-CORDIC algorithm. It shows that by using the proposed MVR-CORDIC algorithm, we can save 50% execution time in the iterative CORDIC structure, or 50% hardware complexity in the parallel CORDIC structure compared with the conventional CORDIC scheme.
منابع مشابه
A Review of CORDIC Algorithms and Architectures with Applications for Efficient Designing
-The coordinate rotation digital computer (CORDIC) algorithm is widely used in various technological fields such as digital signal processing (DSP), biomedical signal processing, robotics, communication systems, image processing etc. Due to ease of simple shift and add operations, the use of CORDIC based systems is increasing drastically. In this paper, some CORDIC based applications have been ...
متن کاملDesign and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملSine Wave Generation Using CORDIC Algorithm
In this paper we describe an efficient CORDIC algorithm that completely eliminates the scaling factor. Besides we have proposed an algorithm to redefine the elementary angles for reducing the number of CORDIC iterations. The Coordinate Rotational Digital Computer (CORDIC) algorithm is another classic approach for sine wave generation. The particular architecture hereby presented generates the p...
متن کاملHardware Efficient Scaling Free Vectoring and Rotational Cordic for Dsp Applications
The COordinate Rotation DIgital Computer CORDIC algorithm has proved its versatility in computing various transcendental functions by only using the shift and adds operations. This paper presents a new hardware efficient scaling free CORDIC algorithm to operate in vectoring and in rotation mode. The micro rotation of the vector is always in one direction with no scale factor correction. The Ran...
متن کاملA unified design framework for vector rotational CORDIC family based on angle quantization process
Vector rotation is the key operation employed extensively in many digital signal processing applications. In this paper, we introduce a new design concept called Angle Quantization (AQ). It can be used as a design index for vector rotational operation, where the rotational angle is known in advance. Based on the AQ process, we establish a unified design framework for cost-effective low-latency ...
متن کامل